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ABSTRACT

This paper considers the problem of asymptotic decay as t - of solutions of the

wave equation utt - Au = -a(x) 3 (utvu), (t,x) e R x K (a bounded, open, connected set in

RN, N > 1, with smooth boundary), u = 0 on IR+ x a9. The nonlinear function 3 is

assumed to be globally Lipschitz continuous, 3(y) = o( I y I) as I YI - _ ,(0,y 2 ... YN+ ) = 0'

ylP(yl.. YN+ ) 0 for all y E 13 is not assumed to be monotone in yl. Under

additional restrictions on the kernel of 3 conditions are given which imply [u,ut] converges

to [0,0] weakly in H = H1 (n2) x L 2 (92) as t -* c,. The work generalizes earlier results of

Dafermos [8] and Haraux [151 where strong decay in H as L -- co was obtained in the case

(Yl....YN+I ) = q(y 1 ), q monotone on IR.
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WEAK ASYMPTOTIC DECAY VIA A "RELAXED INVARIANCE PRINCIPLE"

FOR A WAVE EQUATION WITH NONLINEAR, NONMONOTONE DAMPING

M. Slemrod

0. Introduction

In [8] Dafermos considered the problem of the asymptotic behavior as t -4 0 of

solutions to the weakly damped wave equation

ou + a(x)q(u) 0 on R+ x i2,

(0.1)

u=0 on IR + x an,

where cu - utt - Au, !2 is an open, connected, bounded set in (RN, N >_ 1, with smooth

boundary, and a E Loo(Q), a _> 0 a.e. in Q. Dafermos showed that if meas(supp a) > 0 and

q is a continuously differentiable strictly increasing function on IR, then for any weak

solution u of (0.1) with initial data u(x,0) = u0 (x), ut(x,0) = v0 (x) in H = H1(0)x L2 A)

the "state" [u,utI -- [0,0] strongly in H as t - o. Subsequently Haraux [15] generalized

Dafermos's result to include cases where q is neither strictly increasing nor smooth but where

q does possess a maximal monotone graph. The goal of this paper is to remove the

hypothesis of monotonicity completely and replace it with the less restrictive assumption that

q: R -. IR has its graph in the first and third quadrants which may touch the horizontal axis

either to the left or right of the origin. As we shall see there is a price paid for weakening the

hypothesis on q, namely we must assume a - C00(0), q is continuous, q(O)= 0, q satisfies

growth and Lipschitz criteria, and most importantly decay is now only shown to be in the

weak topology of H.
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Command, USAF, under Contract/Grant No. AFOSR-87-0315. The United States Government
is authorized to reproduce and distribute reprints for Government purposes not with-
standing any copyright herein.



The use of the weak topology in showing asymptotic decay is not new [3,4,5,6,8,25].

The basic ideas used here were exposited by J. M. Ball in [3]. However within the context of

Ball's paper [3] one would require q viewed as a map L2 (Q ) -, L2(Q) be weakly

sequentially continuous. Since this is not the case for general (nonlinear) continuous functions

q on IR, it is pleasant to report that the results here show that such a weak sequential

continuity hypothesis is unnecessary.

In line with the above remarks one may readily note that (0.1) may be written in the

first order form (see Section 3)

dU -=AU + F(U)

(0.2)

U(0) = U0 E H

where A is the infinitesimal generator of a linear C semigroup eA t on a real Hilbert

space H and F: H - H is nonlinear, continuous. For such systems various extensions of

the useful LaSalle Invariance Principle [16,17] have been given to prove decay to equilibrium.

In fact such ideas date back to the work of Hale and Infante [14], Hale [13], and Zubov [30].

More recent results may be found in the papers of Ball [3], Ball and Slemrod [4,5], Brezis [6],

Chafee and Infante [7], Dafermos [6], Dafermos and Slemrod [9], Haraux [15], Pazy [21],

Webb [28], and books of Hale [13], Haraux [16], Henry [17], Pavel [20], Saperstone [23], and

Walker [27]. However in all the work to date (except for the paper of Ball and Slemrod [5]) at

least one of the following hypotheses has been made

(i) eA t is "smoothing" i.e. eA t is compact map: H -- H for t > t0 > 0. This is

useful in "parabolic" like problems (see [3,7,12,13,17,21].)

(ii) -A-F is a maximal monotone operator. This is useful in "hyperbolic"

problems when -F itself is monotone (see [6,9,15,16,20,23,27]).

(iii) ile Atli <5 iM --a t for some (x -, 0. This is useful when A itself generates a

strong dissipative mechanism (see [281).
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(iv) -A is monotone and F is weakly sequentially continuous. This useful in

"hyperbolic" problems where the nonlinear terms have sufficiently few

derivatives (see [3,41).

Surprising perhaps the simple case when -A is monotone and F is continuous

(which includes (0.1)) with no weak continuity or montonicity assumptions on -F is still

open (modulo the special cases considered in [5]). It is in this respect that the results given

here may shed some light on the general problem of decay to equilibrium of infinite

dimensional dynamical systems.

The paper "; divided into four sections after this one. Section 1 provides basic

definitions and concepts from the theory of nonlinear semigroups. Section 2 shows how

semilinear equations of evolution generate nonlinear semigroups. Section 3 then pretents

details as to how a more general version of (0.1) may be placed in semilinear form. Finally

Section 4 derives a "relaxed invariance" principle (Corollary 4.7) which applies to (0.1), (0.2).

The main tools used here are Young measures to express composite weak limits as expected

values and the concept of generalized evolution equation.

1. Preliminary results on nonlinear semigroups

Definitions. Let H be a real Hilbert space. A (generally nonlinear) semigoup T(t) on H

is a family of continuous maps T(t): H ) H, T E R+, satisfying (i) T(0) = identity,

(ii) T(t+s) = T(t)T(s), for all t,s E tR

For X e H define the positive orbit through by 6() = u + T(t)X. The C.-limit set
tER

of X is the (possibly empty) set co(Q) = E H; there exists a sequence tn oo as n -- 0

such that T(tn)Z -, y as n - 0). The weak or-limit set of X is the (possibly empty) set

given by cow(Q) = E H; there exists a sequence tn -- 00 as n i 0, such that T(tn)X " Y

as n - co). Here - denotes weak convergence in H.
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2. Preliminary results on nonlinear evolution equations

Consider the initial value problem

dU -AU + F(U), (2.1)

U(t0 ) = U0 , (2.2)

where A is the infinitesimal generator of a linear C semigroup eA t on a real Hilbert

space H with inner product (.,-) and norm ", F: H -. H is a given function and

U0 E H is a given initial datum.

Definition [1]. Let t1 > t0 . A function U E C([t 0,t1 ];H) is a weak solution of (2.1), (2.2) on
1lt0t *

[t0 ,tl] if U(t 0 ) = U0 , F(U(.)) E LI(t0 ,;H) and if for each W E D(A ) the function

(U(t),W) is absolutely continuous on [t0 ,tl] and satisfies

d(U(t),W) = (U(t),A W) + (F(U(t),W)

for almost all t E [t 0 tl].

Theorem 2.1 [1],[3]. Let t1 > t0 . A function U: [t 0 ,t1 ] --- H is a weak solution of (2.1),

(2.2) on [t0 ,t1] if and only if F(U(.)) E L1 (t0 ,tl;H) and U satisfies the variation of

constants formula

t

U(t) = e A(t-tU) U0 + f eA(t5) F(U(s))ds

to

for all t E [t0 ,tl.
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Theorem 2.2 [22]. Let F: H - H be locally Lipschitz in U. Then for each U0 E H, (2.1),

(2.2) has a unique weak solution U defined on a maximal interval of existence [totmax),

tmax > to, U E C([t0,tmax);H). Moreover if Un E C([t 0 ,tl];H) are weak solutions of (2.1),

(2.2) such that Un(0)) U0 as n -i and t1 > to , then U n  t U in C([t0,tl];H) as

n ----+ , where U is the unique weak solution of (2.1), (2.2) satisfying U(O) = U0.

turthermore for any weak solution U with tmax < there holds

lim IIU(t)I -- * .
max

Theorem 2.3 [4]. Let F: H ----+ H satisfy

(i) F is locally Lipschitz,

(ii) (F(U),U) <_ 0 for all U E H.

Then (2.1), (2.2) possesses a unique weak solution U(t;U0 ) on R + for each U0 E H.

Furthermore T(t)U0 = U(t;U0 ) defines a semigroup on H, cow(U 0 ) is a nonempty set for

each U0 E H.

The proofs of Theorems 2.1, 2.2, 2.3 may be found in the indicated references. Of

course Theorem 2.3 follows directly from Theorem 2.2 since jIU(t)j -< IJU011 by (ii) and

hence tmax = cc and orbits are weakly precompact in H.

3. The damped wave equation

In this section we show how a generalization of the nonlinearly damped wave equation

(0.1) may be placed within the semigroup formalism of Section 2.

Let 2 be a bounded, open, connected subset of tN, N > 1, with smooth boundary.

Let P: N+l -, R be such that
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(i) f3 is globally Lipschitz continuous with Lipschitz constant L

(I P3(y)-P3(z) I -! LlIy-zl),

(ii) P(0,Y2,...YN+l) = 0 for all y e RN+I,

(iii) 3(y) = o(Iy1) as Iy y I

(iv) yl3(y) 0 for all y E [N+R .

Let a E C(Q2), a(x) 0 and a 0.

Consider the nonlinearly damped wave equation

ou = -a(x)p(utvu) on R+ x 92 (3.1)

u = 0 on R+ x an (3.2)

with initial data

u(x,0) =u(x),

x E (3.3)

ut(x ,O) = v0(x).

If we set Ut V U, u ] then (3.1), (3.3) may be written in the first order form

dU = AU + F(U), (3.4)

U(o) = U0 , (3.5)

where

A= , F(U) -ap,A 0 -a(x)PNv)

u 0

= [0]

Set H=H 1(92) x L2(Q) where H is endowed with the "energy" inner product
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(U,Gj) = (vu,vi) L2 (9)+ (v, )L (2

for

It is well known that A with

21D(A) = [u,v]; U E H (92) x H0 (Q)), V E Q)

generates a C0 group of isometries on H. Furthermore since

IjF(U)-F(CQ)H = ja(.)(f3(v,vu) - L3(2,(92)I

-2 + -2 1/V2C1 (1lv-vII 2 ( II 1vu-vuiI 2 Q)11

:5V'2 C1 IU-nC 2, C1  (sup a(x))L,

we see F is globally Lipschitz.

Also we note

(F(U),U) = -{a(.)P(v'vu),v) L2 A 50.



Hence Theorem 2.3 applies and U(t;U 0 ) = T(t)U0 defines a nonlinear semigroup on

H = (Q) x L2(Q). To determine the asymptotic behavior of T(t)U0 as t - o* we will

now investigate the properties of the nonempty weak co,-limit set associated with U0 E H.

4. Asymptotic behavior of solutions to the damped wave equation

As before set U = [u,v], the weak solution (3.1)-(3.3). Then a standard

approximation argument [3] shows

t

IU(t;Uo)l 2-1U0112 = -2 (a(.)P3(v,vu),v)L 2 ()ds 0 (4.1)

and so

JIU(t;U 0 )II < jU0[ for all t E R+ .

Now fix [q),Nf] E ) w(UO) , i.e. there exists tn * so that

U(tn;u 0,v0 ) - (p in H ( 2)

as n-.

V(tn;U0,V0 ) - in L2(0)

For this sequence tn consider the translates

UP ) def U(t+tn;U0).

Certainly
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ilUn(t)l < 1U0] ]

so that for any fixed T > 0

T

f [[Un(t)112 dt _< IIU0 [12T

0

and (Un) is a bounded sequence in L2 ((O,T);H).

Lemma 4.1. The translate sequence U n = runv n ] possesses a subsequence also denoted by

[u n~vn ] so that

U n = [u nVn] -U [Iw--] in L2 ((O,T);H)

and

Un = [un,Vn] U= [iu,w] in C([,T];HW).

Here Hw denotes H endowed with weak topology; [uw] E L2 ((0,T);H) o C([O,T];Hw). In

particular

un  u in L2((0,T);-(K)),

vu n " vu in L2(QT )N ,  (4.2)

vn "v in L

where QT = (0,T) x Q.

9



Proof. Weak convergence of a subsequence of Un in L2((O,T);H) is obvious. Not quite so

obvious is the fact that [unVn] -- [i,w--] in C([O,T];Hw) but this follows from the argument

of Ball and Slemrod [4, Theorem 2.3].

We now recall a result of M. Schonbek [24] on the representation of weak limits in

terms of Young measures (see also Tartar [26], Young [29]).

Proposition 4.2. Let 0 be an open set in Rm . Let wn: OF Rq be a sequence of functions

uniformly bounded in (LP(o))q for some p > 1. Then there exists a subsequence [w n}

and a family of probability measures {v y)y0 on IRq so that if f E C(IRq;IR) and satisfies

f(w)=o([wfP) as jw[- then

f(Wn) (Vy ,f(X)) = f f(k)dvy(X)

[Rq

in the sense of distributions.

From the above proposition we can immediately state the following lemma.

Lemma 4.3. For the translates {vn VUn I c L2 (QT)N+l there exists a subsequence

{v nk,vu nk} c L2(QT) N +  and a family of probability measures (vx,t}(x,t)EQT on RN + l

such that if f E C(RN+l;[R) and satisfies f(y) = o(1y1 2 ) as jy ) - c then

f(V n k9Vun k)-- (Vx,t'f(X)) j Nf f(k')dV x,t(k')

IRN+l

in the sense of distributions.
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Proof. Apply Proposition 4.2 with 0 = QTm = q = N+I, p = 2, wn = {vnVu n}.

For simplicity of notation we write the subsequence (v nVUn) of Lemma 4.3 as

[vnn 

'nun

Lemma 4.4. The following limits hold:

f(vn VUn) - (V xt,[5(X)) in L2 (QT);

vn[5(Vn,Un) ' (Vx, , f[(X)) in the sense of distributions,

x = ( 1  N+1);

where vx' t is the probability measure of Lemma 4.3.

Proof. Since [(y) =o(jy) as jyj -+o both [(y) and y1 [5(y) are o(ly 2 ) as my]---.

From Lemma 4.3 we know [5(vn,VUn) --- , (Vt(X.)) and v n[(V ,VU) (vx,t,[(?)) in

the sense of distributions. But since P3 is Lipschitz,'

1[3(vn'Vun)IL2(QT) < LIIVnI L2(QT)

The uniform boundedness of f5(vn,Vun) and density of C0(QT ) in L2(QT) imply

[(V nVun (V xXt[(X)) in L2(QT) .

Lemma 4.5. U E C([O,T];Hw), U(O) = [(0,y], and for each W E D(A) the function (U(t),W)

is absolutely continuous on [0,T] and satisfies the generalized evolution equation
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(U(t),W) = (U(t),A w) + a(.)(f3(), V x,t(X)) I W (4.3)

for almost all t E [0,T]. (Here Vx,t is the probability measure of Lemma 4.3.)

Proof. Since U are weak solutions of (3.1) - (3.3) we know for all W E D(A ) = D(A),

t E [0,T],

t t

(U n(t),W)-(U(tn)1W)= (Un(S),A W)ds + (F(Un(s)),W)ds. (4.4)

0

By Lemma 4.1, Un U U in C([0,T;H w ) so (Un (t),W) - (U(t),W) for t E [0,T].

Moreover the Lebesgue dominated convergence theorem implies

t t

I(U n (s)' A * W)ds - (U (s ) A * w )d s

0 0

for t E [0,T]. Also by the definition of [(pxV] U(tn) "" [p,N] in I. Finally since

F(Un(s)) = a(.)P(Vn ' Vun

and 3(v nVUn ) (3(P),Vx, t) in L2 (QT) (by Lemma 4.4) we see

(F(Un(S))'W)ds -- j a(-)(3(?), Vx, t ) Wds

0t0

for t e [0,T]. Inserting this limit (4.4) we find that
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t

(U(t),W)-([(,],W) = (U(t),A*W)ds

t[ 0 1w
+ f a(.)(13(%), Vx, t )  W1ds. (4.5)
0

As the right hand side of (4.5) is absolutely continuous (4.3) follows immediately.

The concept of such a generalized evolution equation involving Young measures was

originally suggested by DiPerna [10] within the context of viscosity limits for hyperbolic

systems of conservation laws. Within the context of limiting equations on the co-limit set of

an ordinary differential equation, it was Artstein [1] who realized that an ordinary differential

equation would not be sufficient to characterize the limit flow of non-autonomous ordinary

differential equations. Here we see that similar ideas may be useful in describing the motion

of autonomous infinite dimensional dynamical systems on their weak o)-limit sets.

We can now state and prove our main results.

Definition. We set ker X3 E RN; P3(X) = 0].

Theorem 4.6. Let QT = QT r) supp a. Let Vx, t be the probability measure of Lemma 4.3.

Then we have for almost all x,t E Qj.

supp Vx' t C ker . (4.6)

Proof. From the "energy" equality (4.1) we know
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lIUn(t11 2 - 2U(tn;U0)112 = -2 (Vn a(')P(vn'vun))L2 A ds, (4.7)

for t E [0,T]. Furthermore the function JIU(t;U 0 )j is nonincreasing and bounded from below

so its limit as t - co exists. But since U n(t) = U(t+tn;U0 ) it follows that

I Il iU n(t)II - 1 im [IU(tn;U 0 )II = 0
n-o n- oo

and hence by (4.7)

t

imJ (vn a(')P3(vnvun)) 2  ds = 0, (4.8)
n..4oofn n n 2

0

for t E [0,T].

Now let (D E C0(QT), 0 _ CD _ 1. Since Vna(X)P(Vnvu n ) > (DVna(x) P(vnvun ) >_ 0 for

all x,t E QT, from (4.8) we find

T

lim{! D(x,t)Vn (x,t)a(x)13 (vn,vun)dxdt = 0.

But now we use Lemma 4.4 and the fact that aD E C0(QT) to conclude

T

I'I ~D(xt)a(x)(Xl[3(k), vxt)dxdt = 0 (4.9)
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where now (D may be any nonnegative C0(QT) test function. Equation (4.9) implies

a(x)(XlI()),vx,t) = 0 a.e. in QT and so (Xlpf(X),V)x, t - 0 a.c. in Q'j." Hence the support

of Vx' t must be contained in the kernel of Xlf3(X) for almost all xt E Q%.j" By hypothesis

(ii) on P ker X3(,) = ker f3(X) and the proof is complete.

Corollary 4.7. Let U0 E H and U(t;U 0 ) = [u,v] denote the weak solution of (3.1) - (3.3).

Let [p,xV] denote any arbitrary element of the nonempty weak z>-limit Cow(UO). Then there

is a probability measure vx' t with sup v t t ker 13 a.e. in % and a weak solution u- of

the wave equation

otu=0 on lR x9 2  (4.10)

with Dirichlet boundary conditions

u=0 on + x 2 (4.11)

satisfying

u(x,0) =p(x),

xE fl, (4.12)

ut(x,O) = W(x)

and the constraints

it (x,t) =(%lVx,t); (4.13)

(v-(x,t)) i = (xi+lVx't , i = 1,...N; (4.14)
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a.e. in Q .

Furthermore if

ker R N+l; ci < %.i < di ' i = 1,....N+I, for constant c,d E ,N+ I

then

c1 -< it(x,t) < dI ; (4.15)

ci+ 1 5 (Vii(x,t)) i < di+ 1 , i = 1,2,...,N; (4.16)

a.e. in Q+.

Proof. By Lemma 4.3 and 4.5 for any [p,gi] e cow(U 0 ) there is a probability measure vx,t

and an element U E C([0,T];Hw), U(O) = [cp,xI] and u is a weak solution to the wave

equation with homogeneous Dirichlet boundary conditions on 0 < t < T. But as

U E LO((0,o,);H) and T is arbitrary we see ii satisfies the wave equation with Dirichlet

boundary conditions on 0 < t < *. The rest of the results are obvious.

Corollary 4.8. Assume a(x) > 0 with E = supp a, meas E > 0. Assume either

ker 3 g (y E R; yl -> 0) or (y E RN; yl 5 0). Then for any weak solution U(t;U0 ) of

(3.1) - (3.3) with initial data U0 E HI(Q) x L2 (92) we have U(t;U 0 ) "0 in HI(92) x L2(4)

as t--oo.

Proof. We shall apply Corollary 4.7 and an argument of Haraux [15]. First we note that u,V

satisfy oiu = 0, uit = v, and hence are almost periodic in t, t E R+. Also by (4.15) at (x,t) - 0
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(or < 0) a.e. in Q . and since T is arbitrary we note this is true on Q'+ as well. Hence

the function z(t) = J (x,t)dx is monotone in t for 0 < t < -. But because u is almost

E

periodic in t, 0 < t < c, z must be constant and thus it (x,t) = 0 a.e. in Q'+. But now we

can adopt the following "principle of C.M. Dafermos" [8,15]:

Let a c C(;H (0Q)) n C1 (0;L 2 (92)) be a solution of the wave equation ot = 0 where

92 c [RN, N > 1, is bounded, open, connected with smooth boundary. Assume that for some

measurable set E c Q such that meas E > 0 we have at(x,t) = 0 a.e. on D+ x E. Then we

conclude: =0 on R+ x 92.

Applying this principle to u we find U = 0 and hence ow(U0 ) = {0).

We note Haraux [15] has shown strong decay in the case P(yl,...,yN+l) = q(yl), q

possesses a maximal monotone graph. In the above result the decay is weak but no

monotonicity is assumed on 13.

We observe for example if q(4) satisfies (i) q is globally Lipschitz, (ii) q(0) = 0,

(iii) q(4) = o(1 1) as -14 0, 4q( ) >- 0 for all 4 q R and ker q C IR+ or ker q g R-

Corollary 4.8 applies.

The following corollary shows that less restrictive assumptions on 3 yield decay to a

constrained solution of the wave equation.

Corollary 4.9. Let ker [3 g {y E ; c1  Yl < dl) and a(x) > 0. Then for any weak

solution U(t;U 0) of (3.1)-(3.3) with initial data U0 E H0 (92) x L2(9) and a sequence [tn),

tn  , there is a subsequence also denoted by {tn ) so that

[u(t+tu;uovO), v(t+tn;uO,v 0 )] -- [(t;(PX), (t;(0,XV)]
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in H 0(Q) x L2 (Q) 0 < t <oc, where U satisfies (4.10), (4.11), (4.12) and c1 _ v (x,t) < d1

a.e. in Q x (0,).

Proof. The proof follows directly from Lemma 4.1 and Corollary 4.7.

One final remark. Since the procedure outlined above relies upon first extending the

original evolution equation to a generalized evolution equation on the weak cc--limit set,

Z. Artstein motivated by ideas in control theory and the calculus of variations has suggested

the term "relaxed invariance principle" for the method used here. Hence the origin of the title

of this paper.
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